ATVB in Focus Oxygen Sensing
نویسندگان
چکیده
Reactive oxygen species are ubiquitous signaling molecules in biological systems. Four members of the NADPH oxidase (Nox) enzyme family are important sources of reactive oxygen species in the vasculature: Nox1, Nox2, Nox4, and Nox5. Signaling cascades triggered by stresses, hormones, vasoactive agents, and cytokines control the expression and activity of these enzymes and of their regulatory subunits, among which p22phox, p47phox, Noxa1, and p67phox are present in blood vessels. Vascular Nox enzymes are also regulated by Rac, ClC-3, Poldip2, and protein disulfide isomerase. Multiple Nox subtypes, simultaneously present in different subcellular compartments, produce specific amounts of superoxide, some of which is rapidly converted to hydrogen peroxide. The identity and location of these reactive oxygen species, and of the enzymes that degrade them, determine their downstream signaling pathways. Nox enzymes participate in a broad array of cellular functions, including differentiation, fibrosis, growth, proliferation, apoptosis, cytoskeletal regulation, migration, and contraction. They are involved in vascular pathologies such as hypertension, restenosis, inflammation, atherosclerosis, and diabetes. As our understanding of the regulation of these oxidases progresses, so will our ability to alter their functions and associated pathologies. (Arterioscler Thromb Vasc Biol. 2010;30:653-661.)
منابع مشابه
ATVB in Focus Oxygen Sensing From Vessel Sprouting to Normalization Role of the Prolyl Hydroxylase Domain Protein/Hypoxia-Inducible Factor Oxygen-Sensing Machinery
The accepted model of vessel branching distinguishes several endothelial cell fates. At the forefront of a vessel sprout, “tip cells” guide the sprouting vessel toward an angiogenic stimulus. Behind the tip, “stalk cells” proliferate to elongate the vessel branch and create a lumen. In mature vessels, endothelial cells acquire a streamlined shape to optimally conduct blood flow. For this purpos...
متن کاملATVB in focus: redox mechanisms in blood vessels.
Reactive oxygen species have been implicated in the pathogenesis of virtually every stage of vascular lesion formation, hypertension, and other vascular diseases. We are currently gaining insight into important sources of reactive oxygen species in the vessel wall, including the NADPH oxidases, xanthine oxidase, uncoupled nitric oxide synthase, and mitochondrial sources. Although various reacti...
متن کاملRedox Control of Vascular Function.
In the past several years, a significant body of work has been published in ATVB about new research in the field of vascular biology and redox signaling. We would like to highlight new publications that have enriched our understanding of redox signaling in the context of vasculopathy. Although redox balance and perturbation involve a plethora of proteins and signaling molecules, the focus of re...
متن کاملATVB in Focus Vascular Precursors: Origin, Regulation and Function
Endothelial cells provide the dynamic lining of blood vessels throughout the body and provide many tissue-specific functions, in addition to providing a nonthrombogenic surface for blood cells and conduit for oxygen and nutrient delivery. As might be expected, some endothelial cells are injured or become senescent and are sloughed into the bloodstream, and most circulating endothelial cells dis...
متن کاملRegulating cellular oxygen sensing by hydroxylation.
Oxygen homeostasis under conditions of limited O2 supply requires hypoxia-dependent gene regulation. The transcription factor complex hypoxia-inducible factor 1 (HIF-1) has been recognized as the master regulator that mediates the adaptational genetic response to ensure restoration of energy supply. This review will focus on the recent advances in understanding the hypoxia-induced cellular resp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010